Matthew Bolt ^{a,b,c}, <u>Catharine Clark</u>^{a,c}, Tao Chen ^b, Andy Nisbet ^{a,b}

^a Royal Surrey County Hospital, ^b University of Surrey, ^c National Physical Laboratory, UK

Modelling the impact of machine specific dosimetric variations on clinical outcomes

Introduction

- Assess uncertainty in dose delivery due to
 - Initial calibration uncertainty
 - Variation in beam output
- Compare with variations due to treatment planning technique
- Quantify the clinical impact of beam output variation using radiobiological models

 Quantified based on UK wide dosimetric audits conducted by the NPL over 20 years.

MV photon beams 12 10 Number of results Normally distributed 8 • Mean = -0.06%6 • Std. dev = 0.68% 4 2 · 0 . -2 $^{-1}$ -3 0 1 Difference between host and NPL (%)

Thomas, R. A. S. et al. (2017) 'Radiotherapy reference dose audit in the United Kingdom by the National Physical Laboratory: 20 years of consistency and improvements', **Physics and Imaging in Radiation Oncology, 3, pp. 21–27.**

Beam calibration uncertainty

Beam output uncertainty

- Data collated from 52 UK centres, 204 machines
 - 96 Varian linacs,
 - 92 Elekta linacs
 - 12 Seimens linacs
 - 3 Tomotherapy
 - 1 Cyberknife
- 25,000 measurement sets
 - 6MV Jan June 2015

Bolt, M. A. *et al.* (2017) 'A multi-centre analysis of radiotherapy beam output measurement', *Physics and Imaging in Radiation Oncology*. Elsevier, 4(October), pp. 39–43.

Typical beam output data

ESTRO 37

Output measurements for a single treatment machine

Distribution of delivered doses

- Dose delivered varies dependant upon machine patient is treated on.
 - Mean beam output 0%
 - Standard deviation 0.7%

Distribution of Machine Output Data

Dose variation summary

Source of dose deviation		Standard deviation	95% CI
A – Initial beam calibration		0.7%	1.4%
B – Systematic beam output deviation		0.7%	1.4%
C – Beam output daily fluctuations		0.2%	0.4%
Combined uncertainties:	A * B	1.0%	1.9%
	A * B * C	1.0%	2.0%

Clinical	Outcom	Fractionation		
site	ТСР	NTCP		
Prostate	bPFS @ 10yrs	Rectal bleeding	74Gy/37#	
Head & Neck	2yr survival	xerostomia	65Gy/30#	

Models used		
TCP	Linear Quadratic	/
NTCP	Lyman Kutcher Burman	

Variation due to treatment machine

- Take same patient with fixed biological parameters.
 - E.g. α/β = 1.5 for prostate, 10 for H&N
- Model same treatment on 1000 different linacs (1.0% SD in dose)

Variation in TCP based on machine assignment

Dose variation in context

- DVHs were extracted from PARSPORT trial plans.
- Use of IMRT reduces variation in planned Target doses

Variation in dosimetric parameters with planning technique for primary target

- Variation in dose delivery due to beam output is normally distributed with standard deviation of 0.7%.
- The move from conformal to IMRT planning reduces the target dose variation by over 50%.
 - Resulting in the magnitude of beam output variations being larger than variation due to treatment planning.
- Clinically realistic values of beam output may give rise to variations in clinical outcome of >15% for typical patients.

Thank you

Additional thanks

- NPL staff in the radiation dosimetry group.
- All those who dedicated time to collate and submit routine output data for this study.

<u>References</u>

Thomas, R. A. S. et al. (2017) 'Radiotherapy reference dose audit in the United Kingdom by the National Physical Laboratory: 20 years of consistency and improvements', **Physics and Imaging in Radiation Oncology, 3, pp. 21–27**.

Bolt, M. A. et al. (2017) 'A multi-centre analysis of radiotherapy beam output measurement', **Physics and Imaging in Radiation Oncology. Elsevier, 4(October), pp. 39–43.**

NHS

The Royal Surrey

County Hospital

NHS Trust